IDURMAL OF COMPUTATIONAL PHYSIcs 119, 211-219 (1993)

A Fast, High Quality, and Reproducible Parallel Lagged-Fibonacci
Pseudorandom Number Generator

Micuaer Mascaont, Steven A. Cuccaro, DaNier V., Pryor, anp M. L. Rosmnson

Supercomputing Research Center, LD.A., Bowie, Maryland 207154300

Received April 7. 1994

We study the suitability of the additive {agged-Fibonacci pseudo-
random number generator for parallel computation. This generator
has relatively short period with respect to the size of its seed. How-
ever, the short period is more than made up for with the huge
number of full-period cycles it contains. These different full-period
cycles are called equivalence classes. We show how to enumerate
the equivalence classes and how to compute seeds to select a given
equivalence class. In addition, we present some theoretical mea-
sures of quality for this generator when used in parallel. Next, we
conjecture on the size of these measures of quality for this generator.
Extensive empirical evidence supports this conjecture. In addition,
a probabilistic interpretation of these measures leads to another
conjecture similarly supported by empirical evidence. Finally we
give an explicit parallelization suitable for a fully reproducible asyn-
chronous MIMD implementation. © 1995 Academic Press, Inc.

1. INTRODBUCTION

Tn Knuth’s well-known exposition on pseudorandom nomber
generation [7], several methods of generation are considered.
Among these is the additive lagged-Fibonacci pseudorandom
number generator:

X, = X, T %, (mod M), >k (1)
This generator is defined by the modulus, M, the register length,
[, and the lag, k. When M is prime, periods as large as M’ — |
are possible. However, it is more common to consider lagged-
Fibonacci generators with M = 2™, for some m. These genera-
tors with power-of-two moduli are considerably easier to imple-
ment than general prime moduli; however, their periods are
much smaller than in the prime-modulus case,

In Marsaglia’s empirical study of pseudorandom number
generators [11], the additive lagged-Fibonacci generator with
power-of-two modulus was one among many considered. Over-
all, this generator did well on all of Marsaglia’s *‘stringent™
tests, save the “‘non-overlapping birthday spacing test.”” How-
ever, Marsaglia noted that by choosing a generator with a
large register length, I, improvements are seen in the ‘‘non-
overlapping birthday spacing test.”

211

There are several other compelling reasons to study this
generator, [13]. This generator is used by Thinking Machines
Corporation in their *‘Connection Machine Scientific Subrou-
tine Library”® (CMSSL) as a parallel pseudorandom number
generator.! In addition, Brent has recently added to the under-
standing of this generator in both theory and practice, [1, 2].
Aside from clarifying the conditions for obtaining the maximum
possible period, Breat carefuily analyzed the use of the additive
lagged-Fibonacci integer generator and its floating-point coun-
terpart. In most Monte Carto applications, uniformly disiributed
floating-point numbers, not integers, are desired. The floating-
point counterpart of Eq. (1) is w, = o, + w,—, (mmod 1). Here
the w, € [0, 1) are floating-point numbers. Besides being able
to directly compute floating-point pseudorandom numbers, this
formulation and the integer counterpart in Eq. (1) are amenable
to efficient vectorization, [1]. Thus we see that this generator
in both the integer and floating-point versions is very versatile
indeed. There are several very good reasons for exploring the
additive lagged-Fibonacci generator with power-of-two modu-
lus to find an effective parallel implementation. These include
the strong empirical evidence of pseudorandomness for this
generator, its computattonal simplicity, and its highly efficient
implementation.

First, we must understand some of the properties that are
desirable in a parallel pseudorandom number generator. Besides
efficiency and pseudorandomness, which are properties of the
generator when used in serial, we require that:

(1) the generator must be easy to parallelize (this question
is the primary concern of this paper.)
(2) the generator must be reproducible in a *‘strong’’ sense.

Property 2 is very important to computational scientists. When
doing Monte Carlo calculations on new machines, exact
agreement with previous and trusied calculations is essential.
This is not an easy task, as many sophisticated Monte Carlo
calculations can be quite complicated. By reproducibility in the

't is the careful study of their (lack of a) seeding algorithm that was the
prime motivation for this work.

0021-9991/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

212

“‘strong’’ sense we require reproducibility both on the same
machine with a difterent partitioning of the processing resources
and between machines. This demanding definition of reproduc-
ibility ensures the portability of a parallel generator to any
paralle]l machine—-a rather lofty goal, but one that we show is
attainable with the additive lagged-Fibonacci generator.

The plan of the paper is as follows. In Section 2 we review
the conditions of Eq. (1) and the seed for obtaining the maximal-
period for these generators. We next introduce an equivalence
relationship on the set of seeds that are in a maximal-period
cycle. The large number of equivalence classes (ECs) that result
is the basis for our parallelization. We then describe an enumera-
tion of all of the ECs for a generator. This leads to an algorithm
for the computation of a seed in a given EC. We conclude
Section 2 with a discussion on the quality of this generator in
terms of exponential sums. Next comes a conjecture on the
full-period exponential sums in question. No proof is given,
but we present empirical evidence that supports the validity of
the conjecture. In addition, we use a probabilistic interpretation
of the full-period exponential sums to conjecture on the magni-
tude of their associated partial-period sums. This conjecture is
also supported by empirical evidence. In Section 3 we use an
enumeration of the ECs as the basis for parallelization and
analyze the parent—child generators in terms of their exponen-
tial sum quality. Finally, in Section 4 we summarize the results
and propose directions for further study. To improve the flow
of the paper, two tables are included in Section 5.

2. PROPERTIES OF THE GENERATOR

2.1. Cycle Structure

Let us begin with computing the period of these generators.
If M is prime, then a period of M’ — 1 is possible provided
that the characteristic polynomial f(x) = x' — x* —~ 1 is primitive
modulo M. In the case of interest, when M = 2™, the maximum
possible period is (2' — 1)2"". In general, a linear recurrence
modulo 27 has period (2 — 1)2"7" if and only if the following
three conditions hold:

() modulo 2 the sequence has period (2! — 1),
(I modulo 2* the sequence has period (2! — 132,
(I modulo 2° the sequence has period (2' — 1)2%

For a proof see [12] or exercise 11 of Section 3.2.2 in [7]. We
are only interested in working with simple additive lagged-
Fibonacci generators. For the remainder of this paper, we con-
sider only linear recurring sequences that satisfy the following
three properties:

(i) Equation (1) holds for some 1 > 2 and for some M, a
power of 2.
(i) The characteristic polynomial f(x) = x' ~ x* — 1 is
primitive mod 2.
(i) The seed is not all even.

MASCAGNI ET AL.

Brent recently proved, [2], that if a linear recurring sequence
satisfies properties (i)—(iii), then it has the maximal possible
period of (2/ — 1)277",

There is a conceptual benefit from working modulo a power-
of-two, instead of modulo a prime: the cycle structure present
can be exploited. Taken modulo 2, Eq. (1) defines a shift-
register sequence. With f(x) primitive modulo 2, we obtain a
maximal-period shift-register sequence of period 2/ — 1, [5,
17]. Tt is well known that this sequence cycles over all possible
nonzero contents of its I-bit state. Next consider Eq. (1} taken
modulo 4. The least-significant bits of the register are just the
maximal-period shift-register sequence from the modulo 2 case.
The most-significant bits are the superposition of two se-
quences: (a) the maximal-period shift-register sequence from
the initial values of the most-significant bits, and (b) the se-
quence created by the carries from the least-significant bits,
Sequence (a) cycles with period 2 — 1 if it is nonzero and
adds bit-wise to sequence (b). Thus, without loss of generality
we can assume that (a} is zero and concentrate on (b) to analyze
the cyele structure. Sequence (b) is the superposition of impulse
responses forced by carries from the least-significant bit.? This
impulse response has period 2’ ~ 1. Since we have the maxi-
mum-possible period, the carries must alse have period 2/ — 1,
Thus a particular carry will force a period 2' — 1 impulse
response, after which the periodic repeat of the first carry will
zero the impulse response. Thus each carry will produce a
period (2! — 1)2 response made up of a 2’ — 1 length maximal-
periad sequence followed by 2° — 1 zeros. Because we obtain
the maximum possible period, the superposition of these se-
quences also has period (2! — 1)2. This explains the doubling
of the period when a new most-significant bit is added and
gives an understanding of the cycle structure of the additive
lagged-Fibonacci generator.

We now understand how each new most-significant bit dou-
bles the period of this generaior, however, this adds / bits of
seed to the generator, not just one. The maximum possible
period of these generators is extremely short, given the size of
the seed. In the prime modulus case, the maximum possible
period is equal to the number of nonzero fills in the register.
With M = 2", the maximum possible period of (2! — 1)2" ! is
considerably smaller than the number of nonzero fills, 2" —
1. Where has 2l this state gone?

The answer to this question comes by considering the condi-
tion on the seed for obtaining the maximum possible period.
Since we see that the lesser significant bits perturb the more
significant bits through period-doubling carries, starting the
generator with an all zero least-significant bit must reduce the
period. In fact, the only condition to obtain the maximum
possible period is that the seed must not be all zeros in the
least-significant bit. In terms of residues modulo 27, this means
that the seed cannot be all even. It is easy to calculate that the
number of seeds that give the maximum possible period is
(2! ~ 1)2'"V, Since each of these seeds is in a maximum

? Recall that the impulse response in a shjft-reéister is the sequence obtained
by starting from the “‘unit’” fill [1, O, 0, ..., 0]; ¢.g., see {3].

LAGGED-FIBONACCI PSEUDORANDOM NUMBER GENERATOR

possible period cycle, there must be

(21 . l)zlfmfl)

E=
@12

— 2(.’—1)(;;;—1) (2)
cycles with maximum possible period. Define an equivalence
relation among the seeds as follows: Two seeds are equivalent
if they are in the same cycle. The equivalence classes, that we
henceforth refer to as ECs, are then just the different full-
period cycles.

2.2, Equivalence Class Canonical Form

The use of these ECs will be the key to parallelizing this
generator. Thus we must be able to enumerate the ECs and to
calculate a seed from each of the ECs given this enumeration.
To derive an explicit enumeration, we must decide on one seed
from the full period to serve as the representative for the given
EC. We call this representative seed the EC’s canonical form.
Since the least-significant bit of this generator is a maximal-
period shift-register sequence, we can choose some given non-
zero fill for the least-significant bits of the canonical form. To
transform an arbitrary seed into a seed with the canonical form’s
least-significant bits, one need only advance the seed at most
2" — 72 times to match the least-significant bits.*

Now that we have placed the least-significant bits of a seed
in canonical form, we must decide what to do with the more-
significant bits. Given that we want to simultaneously fix the
least-significant bits and remain in the same EC, we must leap
ahead in the generator's cycie some multiple of 2 — 1, the
period of the least-significant bits.

At this point we must define some notation to simplify the
subsequent discussion. Let us first recast Eq. (1) into a matrix
recursion modulo 27 First we write X, = [X,, Xpo1s cos Xpopi ()7
for the contents of the register at the nth step. We may then
write Eq. (1) x, = AX,., (mod 2™) with the { X ! matrix A
defined by:

k {
0 0 .01 0 .00
I o0 .0 00 .0 00
010 .00 0 .0 0 0
0 0 1 .0 00 .0 00
A=]1000 ...1 00 ...0 0 0. (3
0 010 0
00 0 01 0 00
¢ 0 0 000 ...1 00
O 0 0 6 00 ...0 1 O

¥ A table of size j of least-significant bits spaced equally around the cycle
will reduce this to no more than [(2' — 2)/ﬂ steps.

213

Let us also define an alternative notation for x, so that we can
refer to a particular set of bits across its ! elements. Thus let
X, = [BI,, 6%, .., b{"] be a column vector with &5 holding
x,’s least-significant bits and b, its most-significant bits.*

With the above notation we can say that since A is a recursion
matrix for a maximum possible period additive lagged-Fibo-
nacci generator, AT =1 (mod 2). Let us call J = A?"! 5o
we may write J = [(mod 2) and J* = I {(mod 4). Thus applying
J to x, leaves the least-significant bits fixed, while J leaves
the two least-significant bits fixed. If we assume that we have
changed a given seed’s least-significant bits into the canonical
form, application of J yields two possible b,’s, call them b,
and b]. We choose one of these to be the b, for our EC represen-
tative. An unambiguous choice is to choose the smallest of b,
and b viewed as [-bit integers. Note that b, and b can never
be equal as that would contradict achieving the maximum possi-
ble period. Next we use J in a similar manner 1o choose
between b, and b{z. This procedure continues until we have
our EC representative. By construction, this algorithm produces
the same seed for an EC when given any seed in the same
EC. Additionally, application of this procedure to seeds from
different ECs will produce different canonical form seeds.

Using this algorithm, we can produce a single seed that is
the representative for its EC and is in a canonical form. How
do we now enumerate the different ECs? The number of bits
in the seed is I X m, while the number of ECs is £ = 207D,
Thus a set of (/ — 1)(m — 1) bits specifies a unique EC. Our
canonical form has already specified the [least-significant bits,
s0 it couid be hoped that the canonical form gives the following
explicit enumeration:

m.s.b. lsb.
bm—l bm—Z . bl b(}
Ui 4 g bu}_, Xi-1
t | O bo,JZ Xi-2 4)
D D E‘I b(}l X
0 0 0 bOU Xg

This enumeration leaves exactly (! — 1)m — 1) bits to be
specified in the canonical form and yields exactly E = 2¢-1n-1
different possibilities.

The remarkable thing is that this is the case! To prove it we
first will have to understand the relationship between the bit
vectors b, and b} from our explicit construction of the EC
representative. Recall that the bit vector &, is modified into
b1 by the application of J. The mechanism for this modification
is the superposition of the carries from &, and the evolution of
b, viewed as a shift-register. However, since J = A% and the
period of the shift-register is 2/ — 1, »{ is only a function of
by through the carries. Thus it follows that b1 = b, O C\(by),

? We will usually not use the superscript in subsequent discussion, as we
rarely need to refer to the bits from one time step to another.

214

where C,{by) is a bit-vector valued function that when vectori-
ally added modulo 2 to b, transforms it to &7 via the cumulative
superposition of the carries. Such a transformation exists for
any linear functional on bit-vectors. One consequence of this
representation is that C\(bg) must be the value of &] when b,
is all zeros. Since b, and b{ are not equal, it must be that C(b,)
is nonzero and hence has a most-significant one bit, when
viewing C,(by) as an [-bit integer. This most-significant one
indicates that its bit position changes from b, to b]. Above we
chose the smallest of b, and b viewed as [-bit integers in part
of our canonical form. By choosing this position to be a zero,
we ensure that choice among all b,, b{ pairs and are free to
fill in the remaining ! — 1 as we choose.

This procedure can be repeated for b, and biz via the calcula-
tion of Cy(-), and we can continue to repeat this procedure for
each successive b; to produce the following EC tableau:

m.s.b. i.s.b.
bm—l bnrl bl bO
| (d Q bo,_, X1-1
0 0 0| b, | - (5)
0 0 O b X
O O O bﬂo Xy

The location of the zeros in each x, is the location of the most-
significant one in the C;(-) bit-vector. It turns out this bit-vector
is only a function of the least-significant bit, b;. We next give
a simple proof of this fact.

For simplicity, let us consider Cy(-). Obviously, this bit-
vector can be at most a function of by and &, so we write
Cy(by, b)). We have defined C,(by, b)) as the most-significant
bit of the image under J* when b, = O = {0, 0, ..., 0. We
may think of Cyby, b)) as the most-significant bit of
J[by, by, 0. By linearity we have Cy(by, b)) = Cyby, O) D
C,(0, b)), where Cyb,, O) is the most-significant bit of
Fby., O, O] and Cy(0O, b)) is the most-significant bit of
JO, b,, O). The most interesting of these is C:(0, b,). The
period of the seed [O, &, O] in a modulo 2° additive lagged-
Fibonacci sequence will not be (2' ~ 1)4. Instead it will be
(2 — 1)2. A seed with by = O will always have by, = 0O, so
its top two bits can be thought of as a modulus 2* additive
lagged-Fibonacci sequence. Recall that J* = A®~". Thus J*[O,
b, O] = [0, by, O], and hence C,(0, b)) = O. This implies
that Co(by, by) = Colby, O) D G0, b)) = Co(hy, O) G O =
Ca(by, O). This proves that Cyf*) is a function only of the least-
significant bit, &.

By similar arguments one can show that C;(} is a function
of only the least-significant bit, &,. Write
Ci(bg, b, ...

b)) = Cilh, 0, .. OB C(O, by, . b)) (0)

MASCAGNI ET AL.

Ci(0, by, ..., b)) is the most-significant bit of 30, by, ...,
bl J¥ = A7 and the seed {O, b, ..., b;_,] has period at
most (2" — 1)2"", Thus C(O, by, ..., b)) = O and

Cilby, by, ... b)) = G, 0, ., O) S0

= Ci{h, 0, ... 0).

M

The fact that C;(-) 1s a function only of by has a profound
effect in computing a seed in a given EC, Once we have settled
on the b, for our EC canonical form we can precompute all of
the C;{by). This lets us precompute the location of the fixed zeros
in the EC representative. Thus we have reduced the problem of
producing a seed in a given equivalence class to some precom-
putation and the translation of a (I — 1}{m — 1) bit equivalence
class number into (I — 1)(m — 1) open bit locations in a
seed tableau!

Another consequence of C,(+)'s dependence on by alone is
that we may try several b;’s to find one that gives an EC
canonical form like Eq. (4). It is an open question whether
there always exists a b, such that Eq. (4) is possible. However,
we have implemented a seeding scheme based on these explicit
EC computations for the case of the additive lagged-Fibonacci
used in Thinking Machine’s CMSSL. Here the recurrence is

Xy = Xpos T+ Xpmyy (mod 2%, (8)

With very little work a particular b, was found so that the
tableau in (4) could be used. In fact, for each primitive trinomial
of degree up to 255, a special by was found that gave a canonical
form as in Eq. (4).

2.3. Quality Issues

An important issue in pseudorandom number generation is
the quality of the numbers produced by a given recursion.
There are many desirable randomness properties that a sequence
shouid possess, and it is important that it does well on empirical
tests of statistical randomness. However, empirical testing has
practical as well as theoretical limitations, [7]. Thus the inclu-
sion of qualitative theoretical results that impact on pseudoran-
domness is always important.

A very powerful tool for the theoretical exploration of the
quality of pseudorandomness is the exponential sum. Most
importantly, the exponential sum is related to the discrepancy
through upper and lower bounds, {10, 9, 14]. In turn, the discrep-
ancy appears explicitly in the Koksma—Hlawka bound on inte-
gration error. This is very important since numerical integration
is the fundamental Monte Carlo application.

The exponential sums for a modulo M sequence, {x,}, are
defined as

i-1
C(l,}) = Zﬂ e(ZTr\/ﬁ_}IM)(x"ﬁx"_j). (9)

LAGGED-FIBONACC! PSEUDORANDOM NUMBER GENERATOR

When i = Per(x,), the period length, these are called full-period
exponential sums, otherwise they are called partial-period expo-
nential sums. The manipulation of these sums in order to calcu-
late or bound them is fundamental to many areas of number
theory, [8].

When x, 1s defined by Eq. (1) we have Per(x,) = (2! — 12",
However, recurrences modulo a power of 2 often defy calcula-
tion of exponential sums based on them. This appears to be
the case for additive lagged-Fibonacci sequences modulo a
power of 2. However, empirical observation indicates the maxi-
mal values of the fuil-period exponential sums given in Eq. (9)
are well behaved. In fact, our empirical observations have led
us to the conjecture that |C(Pet(x,), *)| = O(VPer(x,)). An-
otier motivation for our full-period exponential sums comes
through probabilistic reasoning. Each term of the sum in (9) is
a complex nuraber on the unit circle. In fact, it is one of 27
possible values on the unit circle. Let us assume that each of
g@VIU G o= 0, .., 2" — |, is equally probable, a modest
desire for a pseudorandom sequence.’ Viewing each term as a
random variable, a certain scaling of Eq. (9) will have a limiting
normal distribution. The complex number He®% + \/:_Iﬁ,‘jean,
with 8, = 27 {x,/2™), can be viewed as the point in R?, (cos
#.. sin 8,). Under the assumption of equiprobability, the two-
dimensional distribution of these points has means w, = u, =
(0 and covariance matrix

a 0

C= .
0 r

(10

Under the further assumption that the x,’s are independent, Eq.
(9} is the sum of 7 independent, identically distributed random
variables. Thus by the multidimensional Lindeberg Central
Limit Theorem, [4], the sumn C(, j)/\/g, viewed as a point in
}?, will have a limiting two-dimensional normal distribution
with means 1, = @, = 0 and covariance matrix equal to C in
Eq. (10).

There are several inferences that we can make from this
limiting behavior. The first is that the real and imaginary parts
of the sum in Eq. (9) are independent with distributions:

] M{Cu, i}] . [3{C ()]
] —_— 7 = ————
.-lmw P [o < lim P o <

i—o

(i

1 8

— 2
= — e dx.

V2g-s~™
This further motivates our conjecture that the full-period expo-
nential sums in Eq. (9) should be (V' Per(x,}), as the real and
imaginary parts of Eq. (9) are normal with zero means and
standard deviations of O(VPer(x,)}. Another consequence of

® Ttis known empirically that the residues are equiprobable in additive lagged-
Fibonacci sequences suitable for use in a pseudorandom number generator,
[11). The empirical test for this is called the equidistribution test, [7].

215

the asymptotic independent normality of the real and imaginary
parts of Eq. (9) is that | C(i, j) |*/mi will have a limiting distribu-
tion that is ¥*2), i.e., chi-squared with two degrees of freedom,
[6]. In fact, full-period exponential sums formed with other
putative psendorandom sequences should have a similar lim-
iting behavior. This {orms the basis for another empirical test
of pseudorandomness by checking for agreement between the
distribution of |C(i, j}|¥@i and x*(2) among different full-
period cycles.

We now present empirical evidence to support our conjecture
on full-period exponential sums. We begin with qualitative
examples and then provide quantitative evidence obtained
through extensive computation. Figures 1, 2, 3, and 4 show the
running sum in Eq. {(9) as it marches over a full period. The
figures are all for the same recursion, namely x, = x,_; + x,s
{mod 2"}, where m = 2 in Fig. |, m = 3in Fig. 2, m = 4 in
Fig. 3, and m = § in Fig. 4. The circles in the figures have
radii that are integer multiples of V' Per(x,). We sce that at all
times these sums remain smaller than 2 X VPer(x,). In Table
1 of Section 5 we have more numerical evidence to confirm
our conjecture. Here we have computed the scaled full-period
exponential sum,) C{Per(x,), -1}/ Per(x,), over different ECs.
This rectangular table has rows that are indexed by m and
columns that are indexed by [as defined in Eq. (1). Alongside
the rows, we have written the (&, {} pair used to define the
lagged-Fibonacci recurrence used for that vaiue of L In the
table, bold-faced entries indicate that all ECs of that generator
were searched, and the number shown is the maximurn full-
period exponential sum. Roman-faced entries are the maxima

| 1 4 I | S I N N
22,00 150 -1.00 0.50 0.00 0.50 1.0 1.50 2,00
FIG. 1. Exponential sums, C{, j), j = | to Per(x,) for x, = x,_; + Xx,_5

{mod 2%). Circles have radii that are integer multiples of VPer(x,).

216

1.60

120 -
1.00 ~
0.80 [~
0.60 }— I
0.40 ~ {
020l
£.00 —
020
0.40 —
0.60 |-
080 - 3
-1.00 “.
120

-1.40 —

160

.]AB() —

200 -

-2.0G -1.50

FIG. 2. Exponential sums, C(i, j), j = | to Per(x,) for x, = x,; + x,-5
(mod 2%. Circles have radii that are integer multiples of V'Per(x,).

over 1000 ECs; italic entries are the maxima over 100 ECs.

Table II of Section 5 is identical to Table [in format except

the quantity tabulated is the maximal value of |C(i, j)|/
Per{x,} encountered in the generator’s full period,

-1 4.50 Q.00 0.50 1.0G 1.50 200

-2.00 -1.50

FIG. 3. Exponential sums, C(i, j}, j = 1 1o Per(x,) for x, = x,; + x5

{mod 2%. Circles have radii that are integer muliiples of VPer{x,).

MASCAGNI ET AL.

L

1 1 |

1

L

.50 0.00 0.50 1.00 1.50 2400

FIG. 4. Exponential sums, C(i, j), j = 1 to Per(x,) for x, = x,-2 + x,_5
(mod 2%, Circles have radii that are integer multiples of VPer(x,).

Two remarkable facts evident from the tables are that the
largest entry in each table is smaller than five and that corre-
sponding values from Table I and Table II are very close. This
supports our conjecture. In addition it motivates us to conjecture
on the maximal values of the partial-period exponential sums.
What we have computed for Table Il are scaled maxima of
partial-period exponential sums. However, we have started at
a single initial seed and have not explored all initial seeds. This
is not a substantial omission as the triangle inequality tells us
that our tabulated partial-period exponential sums must be at
least half of the largest partial-period exponential sum obtain-
able with any initial seed.

For other linear recurrences, when the full-period exponential
swm is known, standard theory allows one to bound the partial-
period sums based on the full-period values, [10, 14]. Thus if
we conjecture than the full-period sum is |C(Per(x,),)| =
€ (/Per(x,)), then this theory would state that the partial-period
sums are |C(, j)| = O(\V/Per(x,) log Per(x,)). However, the
tables indicate that this is an overestimation. Using probabilistic
reasoning and the Central Limit Theorem behavior of the real
and Imaginary parts of Eq. (9), we may conclude that the real
and imaginary parts of Eq. (9) behave like independent one-
dimensional Brownian motions. Thus the law of the iterated
logarithm for Brownian motion motivates a bound on the
partial-period exponential sums, 31, ie., |CG, j)| =
O(V/Per(x,) log log Per(x,)). This is slightly better than ex-
pected from upper estimates that follow from our original con-
Jjecture. In fact, it appears that the full-period and partial-period
exponential sums are of the same magnitude.

LAGGED-FIBONACCI PSEUDORANDOM NUMBER GENERATOR

An important use of exponential sums in the case of paraliel
pseudorandom number generation is to use them as a measure of
the exponential sum cross-correlation among different parallel
pseudorandom number sequences. Suppose we have two mod-
ule M pseudorandom sequences, {x, } and { y, }. Their exponen-
tial sum cross-correlation 1s given by

i-1
Clij) = Zﬂ e 2TV UM).

(12)

In our case we are interested in sequences that are both gener-
ated by (1) and have seeds in different ECs, Since C(i, j) is a
sum over the difference of sequences at a fixed offset, j, we
can compute it by considering it as an exponential sum of the
same recurrence in a potentially different EC. This is because
the difference of two sequences obeying a given recursion will
itself obey the recursion. Thus Eq. (12) gives us a qualitative

TABLE I

Full-Period Exponential Sums, |C{Per(x,}. -}|/VPer(x,), for
Varjous Additive Lagged-Fibonacci Sequences of the Form x, = x,; +
X,y (mod 2™

m
(LK) 1 2 3 4 5 6 7 8 9
(3,1) 0.378 120 145 190 208 266 236 261 3.03
3.2) 0378 1.20 171 206 221 222 283 265 284
(4,1) 0.258 1,32 1.84 270 321 325 405 265 299
(4,3} 0258 132 216 266 296 335 395 346 3460
(5.2 0.180 1.63 246 292 349 4.01 457 270 3.03
(8,3) 0,180 1.63 254 295 355 399 480 312 362
6,13 0.126 1314 276 402 382 25 265 260 304
6.5 0.126 1.14 286 4.00 381 299 390 303 305
(7.1) 0.089 1.51 289 343 299 293 275 287 26l
.3 0.089 151 313 386 254 236 269 270 2.86
(7.4 0088 151 271 366 274 304 285 163 281
(7.6) 0.089 1.51 300 360 290 269 306 273 255
9.4) 0.044 146 327 264 253 281 323 285 285
(9.5) 0044 146 374 276 302 263 274 283 268
{10,3) 0031 1.63 399 261 267 233 270 281 287
(10,7) 0031 103 391 253 260 242 353 262 233
(1,2 0.022 144 317 252 261 267 255 266 2.66
1Ly 0022 144 273 290 267 299 2355 290 259
(15,1 0006 142 270 269 284 276 360 238 2.0
(15.4) 0.006 42 282 262 262 299 223 183 205
(15,7) 0.006 142 314 316 239 277 202 203 178
(15.8) 0006 142 2380 256 235 235 23F 213 262
(15,1 0.006 142 310 303 263 269 279 220 224
(15,14} 0.006 142 314 279 269 253 232 238 217
(17,3) 0002 142 277 263 221 221 204 221 236
(17.5) 0002 142 315 265 228 220 208 271 230
(17.6) 0.002 142 271 271 267 233 271 194 228
(17,11) 0002 142 324 262 242 234 228 194 2358
(17,12) 0002 142 286 2353 199 277 239 241 200
(17.14y 0002 142 255 273 191 223 219 220 239

Note. Rows are indexed by [and columns by m. See text for further details.

217
TABLE 11
Extremal Values of Exponential Sums, max ¢|C(, j)|/
O<jsPertx }

V Per(x,)), for Varicus Additive Lagged-Fibonacci Sequences of the
Form x, = x,., + x,~ (mod 27)

m
(k) 1 2 3 4 5 6 7 g 9
3.0 076 120 149 190 211 266 261 269 306
3,2) 876 120 171 2906 221 222 305 176 287
{4.1) L03 132 184 270 338 339 405 273 3.05
(4,3) 129 139 216 266 296 339 397 354 383
(5.2) 090 163 255 292 349 405 457 272 304
{5.3) 054 163 263 295 358 405 482 312 382
(6.1 0.88 1.64 276 402 390 301 265 270 3.06
(6,5 101 153 292 406 400 304 391 308 3.05
(7.1 106 164 298 352 304 303 282 287 267
(1.3) 089 174 313 393 263 241 279 288 293
(7.4 080 165 28 378 278 320 288 277 295
(7.6) 071 202 3.02 360 303 269 306 2.85 282
(9,4) 084 216 346 272 264 2834 339 291 285
9,5 075 195 X379 283 308 305 283% 291 2095
{10,3) 131 185 405 275 304 267 294 306 293
(10,7) 106 2.02 394 267 286 257 355 281 248
(11,2) 106 207 328 273 266 272 2% 268 254
Ly 086 202 298 2099 268 300 283 301 3.07
(15.1) 135 210 286 275 289 290 371 262 272
(15.4) L11 210 325 276 265 308 247 194 218
(15,73 887 199 215 335 262 199 06 206 218
(15,8) 0.77 219 289 259 265 246 256 233 2.76
(15,11) 103 217 333 307 271 278 249 223 255
(15,14) 128 2.6 319 291 277 267 234 249 245
(17,3) 136 219 283 1270 228 229 221 228 239
(17,5) 075 216 323 277 237 230 242 272 257
(17.6) 0.61 215 281 273 340 237 272 228 233
(17.11) 0.65 245 333 282 249 237 154 1.99 264
{17,t2) 071 220 310 273 200 283 252 248 206
(17,14} 132 213 255 290 228 227 250 254 2.64

Note. Rows are indexed by | and colamns by m. See text for further details.

tool to explore relationships between related ECs. This ap-
proach is discussed in Section 3.2.

3. PARALLEL CONSIDERATIONS

3.1. Equivalence Classes for Parallelism

With this huge number of ECs, parallel implementation is
easy. The key is to associate each independent paraliel process
in the computation with a unique parallel process identifier, K.
This X is then used to select the Kth EC for this process.f

This procedure works without difficulty provided the param-
eters for the generator are chosen so that no X 1s required in
the computation that exceeds 2678 —

®In practical implementations, the Kth parallel process obtains the f{K)th
EC, where f(-) is an appropriately chosen function.

218

One of the most demanding applications for pseudorandom
generators is transport Monte Carlo, [16]. Here the path of a
particle is followed and modified via sampling. Particles are
emitted, absorbed, and created along a trajectory based on the
parameters of the problem and the outcome of the pseudoran-
dom number generator. The overall soiution is then the average
over many different particle trajectories. The partitioning of
this problem among different processors is conceptually trivial
via the independent trajectories. However, ensuring the repro-
ducibility of this computation on an asynchronous MIMD ma-
chine is not nearly as easy. Since a particle may create new
particles, this leads to new trajectories to be followed. It is
common practice to place the information from a particle cre-
ation into a computational queue. The queued particles are then
processed when a free processor becomes available. Reproduc-
ibility requires that particles are put into the queue with suffi-
cient information for the pseudorandom number generator o
produce the same stream of pseudorandom numbers regardless
of what processor or in what order the particle is processed.
When using the additive lagged-Fibonacci generator, one need
only provide a unique K for each particle to ensure reproducibil-
ity in this very general sense.

In general, if one is computing on an arbitrary asynchronous
MIMD machine, it is desirable to be able to produce a child
process identifier, K, that is guaranteed to be distinct from
others created elsewhere in the computation. In addition, the
assignment of X should be a jocal computation based only on
the parent’s process identifier. This is easily accomplished by
associating the paralle] processes with a binary tree. When the
process for node K is required Lo create n children, it does so
by assigning the 7 nodes closest to and below it on the binary
wee. This assures a local computation. In particular, if the
process assigned to node K has two children, they receive nodes
2K + 1 and 4K + 2.

This procedure does not totally solve the problem of the
reuse of ECs in an asynchronous MIMD computation. It is
possible to have each particle in a computation create one child
particle and hence répidly descend down the (I — D){(m — 1)
+ 1 levels of the process binary tree. However, this seems to
be a very unlikely situation, as even the relatively small CMSSL
generator has 497 levels!

3.2, Equivalence Classes and Exponential Sums

We now turn to the analysis of exponential sum cross-correla-
tions among ECs. If {x,} and {y.} come from different ECs,
we know we can find an offset, j, so that X, and ¥,.; agree in
their least-significant bit. In fact, if X, and y, are their respective
EC representatives, they already agree in their least-significant
bit. Now assume that we are working with recurrences from
Eq. (1), i.e., M = 27, and we have the full-period exponential
sum as a function of m, i.e., C(Per(x,), -) = F(m). The difter-
ence, 7, = X, — Y., i5 even and may be wrilten as 7, =
2z,, where 7, is a maximum possible period additive lagged-

MASCAGNI ET AL.

Fibonacci sequence modulo 2%, Thus

Per(x,)-1 Per(x)—1
2 o I, o E o iz,
= n=0
Per{x)1 2Per(z,)—!
sy 1 spmymr—1
- 2 o ™ e, — Z e @, (13)
2=0 n=0
Per(z }—1

20 e e = 2F (m — 1).
r=0

From above we conjectured that F(m) = O(2™?), so that if x,
and y,.; agree in their r least-significant bits, then the full-
period exponential sum cross-correlation, Eg. (12), 13 27 times
bigger than the full-period exponential sum, Eq. (9).

This gives us a clear understanding of how different ECs
are related, since one way to see how many least-significant
bits of overlap there are between (x,} and {y,} is to place
them in canonical form. Because of the periods of the different
bits, {x,} and {y,} can be made to agree in their r least-
significant bits if and only if their EC representatives agree in
their r least-significant bits. This means that a local scheme of
computing child process numbers based on the mapping of
parallel processes onto the binary tree will always produce
children with cross-correlations as small as possible. In fact,
this analysis allows us to modify the assignment of process
numbers in appropriate ways to avoid large cross-correlations
if a particular computation chooses reflated ECs poorly in this
respect. In our implementation of this generator, we did not
use this assignment procedure for child processes for the reason
of correlations in lesser-significant bits in sequences all started
from the EC representatives. One solution is to apply some
pseudorandom power of A to a given seed, but in our implemen-
tation we believe we have a more elegant solution, [15].

4, DISCUSSION AND CONCLUSIONS

We have provided the theoretical background for the use of
a two-term additive lagged-Fibonacci pseudorandom number
generator in the most general parallel setting. The algorithms
are based on the realization that Eq. (1) produces a vast number
of full-period cycles. These cycles can be explicitly chosen
through the calculation of an appropriate seed. We have also
provided a simple and general local computation to produce
child ECs from parents. In addition, we have analyzed the
theoretical quality of these sequences and have understood the
exponential sum cross-correlations among different ECs.

Still open is a proof that the canonical form given in Eq. (4)
is always atmainable through a judicious choice of the least-
significant bits.” We also have only conjectured as to the value
of the principle full-petiod exponential sum. A proof would be
much more satisfying.

" Since this paper was submitted, this conjecture has been proven by Christina
Bahl, Details will be included in a future paper.

LAGGED-FIBONACCI PSEUDORANDOM NUMBER GENERATOR

In addition to this work, we have provided an implementation
of these ideas, [15). This implementation is very sirilar to the
ideas presented here except that the seeding method has been
improved. This implementation is based directly on the integer
recursion in (1) and produces [0, 1) random variables by u, =
x./M. A more direct approach is 10 work directly with floaiing-
point nombers and take Eq. (1) modulo 1. This can be done
while still ensuring absolute EC integrity by providing zero
valued guard bits in the mantissa. For our simple three term
recursions with =1 coefficients, a mantissa of length & bits can
hold floating-point values in the top s — 1 bits without risking
an operation that changes the EC.

REFERENCES

1. R. P. Brent, **Uniform Random Number Generators for Supercomputers,”
in Proceedings, Fifth Australian Supercomputer Conference, SASC Or-
ganizing Commitree, 1992, p. 95, {unpublished).

2. R. P. Brent, Math. Compur. 63, 389 (1994).

3. Fcller, An Introduction 1o Probability Theory and Its Application, Vol, 1,
3rd ed., (Wiley, New York, 1968).

4. Feller, An Introduction to Probability Theory and hts Application, Vol. 1,
2nd ed., (Wiley, New York, 1971).

5. 8. W, Golomb, Shifi Register Seguences, vev. ed, (Aegean Park Press,
Laguna Hills, CA, 1982),

11

12.

219

. R. V. Hogg and A. T. Cralg, Introduction to Mathematical Statistics, 4th
ed, (MacMillan Co., New York, 1978),

. D.E. Knuth, The Art of Computer Programming. Vol. 2. Seminumerical
Algorithms, 2nd ed. (Addison-Wesley, Reading, MA, 1981).

. N. M. Korobov, Exponential Sums and Their Applicarions, Kluwer Aca-
demic, Dordrechi, 1992.

. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequiences (Wiley,
New York, 1974),

. R.Lidl and H. Niederreiter, fntroduction to Finite Fields and Their Applica-

tions (Cambridge Univ. Press, Cambirdge/London/MNew York, 1986).

G. Marsaghia, ‘A Current View of Random Number Generators,”” in

Computing Science and Statistics: Proceedings of the XVith Symposium

on the Interface, 1983, p. 3. {unpublished).

G. Marsaglia and L.-H. Tsay, Linear Algebra Appl. 67, 147 (1985).

. M. Mascagni, S. A. Cuccaro, D. V. Pryor, and M. L. Robintsen, *‘Recent
Drevelopments in Parallel Pseudorandom Number Generation,”” Vol, IL, in
Proceedings, Sixth SIAM Conference on Paraliel Processing for Scientific
Computing (D, E. Keyes, M. R, Leuze, L. R. Petzold, D. A. Reed, Eds.)
(SIAM, Philadelphia, 1993), p. 524,

. H. Ntederreiter, Random Number Generation and quasi-Monte Carlo Meth-
ods, {S1AM, Philadelphia, 1992},

. D.V.Pryor, 8. A. Cuccaro, M. Mascagni, and M. L. Robinson, **[rnplemen-
tation of a Portable and Reproducible Paralie! Pseudorandom Number
Generator,”” in Proceedings, Supercomputing '94, p. 311.

. 1. Spanier and E. M. Gelbard, Monte Carlo Principles and Neurron Trans-
part Problems {Addison-Wesley, Reading, MA, 1969).

. R. C. Tausworthe, Math. Comput. 19, 201 (1965).

